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Richtmyer–Meshkov instability �RMI� in gas-particle mixtures is investigated both numerically and
analytically. The linear amplitude growth rate for a RMI in a two-phase mixture is derived by using
a dusty gas formulation for small Stokes number �St�1.0�, and it is shown that the problem can be
characterized by mass loading and St. The model predictions are compared with numerical results
under two conditions, i.e., a shock wave hitting �1� a perturbed species interface of air and SF6

surrounded by uniformly distributed particles, and �2� a perturbed shape particle cloud in uniform
air. In the first case, the interaction between the instability of the species perturbation and the
particles is investigated. The multiphase growth model accurately predicts the growth rates when
St�1.0, and the amplitude growth normalized by the two-phase RMI velocity shows good
agreement with the single-phase RMI growth rate as well. It is also shown that the two-phase model
results are in accordance with the growth rates obtained from the simulations even for cases
corresponding to St�10. However, for St�10, particles do not follow the RMI motion, and the
RMI growth rate agrees with the original Richtmyer’s model �R. D. Richtmyer, “Taylor instability
in shock acceleration of compressible fluids,” Commun. Pure Appl. Math. 13, 297 �1960��.
Preferential concentration of particles are observed around the RMI roll-ups at late times when St is
of order unity, whereas when St�1.0, the particles respond rapidly to the flow, causing them to
distribute within the roll-ups. In the second problem, the two-phase RMI growth model is extended
to study whether a perturbed dusty gas front shows RMI-like growth due to the impact of a shock
wave. When St�1.0, good agreement with the multiphase model is again seen. Moreover, the
normalized growth rates are very close to the single-phase RMI growth rates even at late times,
which suggest that the two-phase growth model is applicable to this type of perturbed shape particle
clouds as well. However, when St is close to unity or larger �St�1.0�, the particles do not
experience impulsive acceleration but rather a continuous one, which results in exponential growth
rates as seen in a Rayleigh–Taylor instability. © 2010 American Institute of Physics.
�doi:10.1063/1.3507318�

I. INTRODUCTION

Richtmyer–Meshkov instability �RMI� is caused by an
impulsive acceleration of a perturbed interface between two
media of different densities.1,2 A primary interest in RMI
study is to understand the amplitude growth rate of the per-
turbation, since it is a direct measure of the mixing between
the two fluids. RMI growth can be identified by a bubble and
a spike; a bubble is defined as the region where the lighter
fluid penetrates into the heavier fluid, and similarly, a spike is
the region where the heavier fluid penetrates into the lighter
fluid. An amplitude a is defined as one-half of the distance
between the bubble and the spike front.

Numerous theoretical/empirical growth models of
single-mode perturbation have been proposed in the past and
have been validated against experimental and numerical
studies.3–6 However, RMI occurring in natural and engineer-
ing environments are generally more complex. Therefore,
many studies investigated RMI with more complex interface

conditions such as a multimode interface,7 with a reshock,8,9

in cylindrical geometries,10 and in spherical explosions.11

However, most of these past studies have focused on single-
phase flow. RMI effects in two-phase flows are also impor-
tant for various applications such as explosions with reactive
metal particles,11 chondrules concentration in a nebula,12 and
possibly other multiphase systems involving shock waves.

In general, particles in a flow field are known to affect
the instability of the gas-phase. For example, it has been
shown that particles modify the Orr–Sommerfeld equation
and stabilize or destabilize the transition to turbulence de-
pending on the particle size.13 In another study, it was shown
that the amplitude growth rate of two-phase Kelvin–
Helmholtz instability14 �KHI� was reduced due to particles in
the vicinity of the interface. On the other hand, it appears
that the interaction of a RMI with particle clouds has never
been studied to the best of the authors’ knowledge. Past stud-
ies analyzed the two-phase fluid instability by performing a
linear perturbation analysis on the dusty gas formulation13–15

that assumes that the particle shapes and sizes are uniform,
and the particle motions can be described by the Eulerian
coordinate. Here, the dusty gas formulation is employed to
establish a linear growth model of two-phase RMI similar to
Richtmyer’s model.1 However, since the model is explored
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only in a certain regime due to the nature of the governing
equations of the perturbation method and the assumptions
made, numerical simulations are performed with different
particle sizes and mass loadings of particles to study a wider
range of initial conditions.

The dusty gas formulation13 assumes that a particle
cloud itself can be treated as a different gas, a region filled
with particles can be considered to have a larger density, and
the RMI growth model can be explored under certain condi-
tions. There are various studies of deformation of particle
clouds by shocks with different shapes of particle
clustering,16–18 but none of them have been analyzed in
terms of RMI. For example, Ota et al.19 observed the defor-
mation of a half-height dense gas caused by a shock wave,
and Kiselev et al.17 performed numerical simulations with a
similar setup but having particle clouds instead of a heavy
gas. Their results showed qualitatively that particle disper-
sion shapes are very similar to the deformation of a dense
gas. Other past numerical studies20,21 investigated clouds of
heavy particles falling into a light fluid, and reported the
formation of structures similar to the Rayleigh–Taylor insta-
bility �RTI�. In the present study, the shock accelerated per-
turbed particle cloud is analyzed by using the two-phase
RMI growth model to examine whether the amplitude
growth follows RMI-type growth rates.

Two different types of two-phase RMI are analyzed in
the present work. The first type involves the impulsive accel-
eration of a perturbed species interface of air/SF6 surrounded
by a uniformly distributed cloud of particles. The second
type of RMI study considered here is the shock wave in-
duced dispersion of a particle cloud with a perturbed shape
within a uniform gas. Numerical simulations for a range of
conditions are performed and compared to a new theoretical
model prediction.

This paper is organized as follows. The governing equa-
tions for the gas and solid phases are presented in Sec. II.
The growth model of two-phase RMI is formulated in Sec.
III. The results of RMI surrounded by the particles and the
RMI with the perturbed shape particle clouds are discussed
in Sec. IV. Finally, the conclusions drawn from this study are
presented in Sec. V.

II. SIMULATION METHODOLOGY

A. Gas phase

The compressible Navier–Stokes equations for multispe-
cies and multiphase flows under the dilute limit �negligible
solid volume fraction� are11

��

�t
+

��ui

�xi
= �̇p, �1�

��ui

�t
+

�

�xj
��uiuj + p�ij − �ij� = Ḟp,i, �2�

��E

�t
+

�

�xi
���E + p�ui + qi − uj�ij� = Q̇p + Ẇp, �3�

��Yk

�t
+

�

�xi
��Ykui + Ji,k� = Ṡp,k k = 1, . . . ,Ns. �4�

Here, � is the density, �ui�i=1,2,3 is the velocity vector in Car-
tesian coordinates, p is the pressure, E is the total energy, Yk

is the mass fraction for species k, �ij is shear stress tensor, qi

is the rate of heat transfer, Ji,k is the diffusion flux, and Ns is

the total number of species in the flow. �̇p, Ḟp,i, Q̇p,i, Ẇp,i,

and Ṡp,k are the source terms of mass, momentum, heat,
work, and species due to the presence of particles. The cur-
rent study assumes that the particle loading is dilute, so that
volume occupied by particles is considered to be negligible.
Also in this study, only momentum exchange is considered,

hence, Ḟp,i�0. The pressure is computed from the equation
of state for a calorically perfect gas as p=�RT, where T is
the temperature and the mixture averaged gas constant is
obtained as R=�k=1

Ns Yk�Ru /MWk�, where Ru is the universal
gas constant and MWk is the molecular weight of the kth
species.

Since RMI involves large gradients at the shock front
and the species interface, as well as smooth regions such as
shear layers, this study uses a hybrid scheme22,23 that
switches the flow solver depending on the local flow condi-
tions, and the scheme has been validated for various engi-
neering flows involving shocks, turbulence,22–24 and multi-
phase flows.11,25 The hybrid scheme uses a fourth-order
central scheme within smooth regions and reverts to a flux
difference splitting method in regions of strong gradients.
The monotone upstream-centered schemes for conservation
laws approach is used to reconstruct the flow variables at
intercell interfaces, and a hybrid Riemann solver, Harten Lax
van Leer Contact/Einfeldt �HLLC/E�, is applied to obtain the
intercell fluxes.22 Details of the numerical schemes are avail-
able elsewhere.22–24

B. Particle phase

This study utilizes the Lagrangian tracking method that
computes the velocity and location of each point-particle.
This approach has been used in the past for particle tracking
and is well established.26 The particle trajectories are com-
puted by solving the following governing equations:

dxp

dt
= v , �5�

m
dv

dt
=

�

2
rp

2CD��u − v��u − v� , �6�

where xp is the position of the particle, u is the local velocity
of the gas at the location of the particle, v is the velocity of
the particle, m is the particle mass, r is the particle radius,
and CD is the drag coefficient. The drag coefficient is gener-
ally expressed as a function of the particle Reynolds number,
Red=

2rp��u−v�
	 , where 	 is the dynamic viscosity of the gas.

Equation �6� typically contains other terms on the right hand
side to include the effect of pressure gradient, the Basset
term, the Saffman lift, and the Magnus lift.27 For this dilute
study, all these effects are neglected as a first approximation.
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Assuming the particles are spherical, the drag coefficient CD

is obtained from the empirical relations26 as

CD = 	 24

Red

1 +

1

6
Red

2/3� Red 
 1000,

0.424 Red � 1000.
� �7�

It is shown that heat transfer between the fluid and the par-
ticles can affect shock-particle interactions.28 However, heat
transfer is neglected in the present study as also done in
previous instability analysis,13,14 but will be investigated in a
latter study. The parcel method29 is used to approximate par-
ticle clouds, where a parcel consists of a group of particles
that carries the same properties. This approach significantly
reduces the computational memory requirements; detailed
explanation of the parcel method is available elsewhere.29,25

A fourth-order Runge–Kutta method is used to integrate
Eqs. �5� and �6� in time.

III. AMPLITUDE GROWTH MODEL FOR MULTIPHASE
RMI

Richtmyer1 originally derived the linear growth model of
RMI by applying an impulsive acceleration to the growth
model of the RTI derived from a linear perturbation
analysis30 and obtained the following linear growth with time
�t�:

a�t� = v0t + a0, �8�

where a is the instantaneous amplitude, a0 is the initial am-
plitude, v0 is the Richtmyer velocity defined as v0

=ka0A�V, k is the wavenumber given as k=2� /�, � is the
wavelength, A is the Atwood number defined as A= ��2

−�1� / ��2+�1�, �2 and �1 are the density of the heavy and the
light fluid, respectively, and �V is the change in the speed of
the interface by an incident shock. However, the impulsive
model is only applicable at early times where ka
0.3.3

A growth model for two-phase RMI is obtained by fol-
lowing a similar approach but by employing the dusty gas
formulation13 that assumes the volume fraction of particles
are very small, and that the interaction between particles is
neglected. The linear perturbation analysis is first used to
obtain the growth rate of two-phase RTI following a past
KHI study,14 and then the two-phase RMI growth rates are
evaluated by the impulsive method.1

The dusty gas equations for a mixture of gas and a
pseudofluid of small particles can be written as13

� �u

�t
+ �u · ��u� = − �p + 	�2u + N�v − u� + �g � z ,

�9�

� · u = 0, �10�

mN �v

�t
+ �v · ��v� = N�u − v� + mg � �Nz� , �11�

�N

�t
+ � · Nv = 0, �12�

where u is the gas velocity, v is the velocity of the particles,
p is the gas pressure, 	 is the gas viscosity, � is the gas
density,  is the drag term, N is the number density of the
particles, m is the mass of the particle, z is the height, and g
is the driving acceleration. Assuming the particles are spheri-
cal, =6�rp	 is used from Stokes’ law,13 where rp is the
radius of particle. Note that the drag law used for the theo-
retical analysis is simpler than that used in the numerical
simulation �Eq. �7�� in order to maintain linearity of the the-
oretical formulation.

Also, the pseudofluid formulation is incompressible
since it is assumed that once the shock wave passes the in-
terface, the flow is incompressible, as also assumed by
Richtmyer.1 The equations are linearized by considering a
small perturbation as follows

u = U0 + u�,v = U0 + v�,N = N0 + N�,

�13�
p = p0 + p�,z = z0 + a .

Here U0, N0, p0, and z0 are, respectively, the mean velocity,
the number density, the pressure, and the particle position.
Note that U0 is the mean velocity only in the x-direction, and
the mean particle velocity is equated to the gas velocity, U0
as also assumed in the original papers.13,14 Also, z0 is the
reference height chosen to be zero. u�, v�, N�, and p� are the
corresponding fluctuation of each parameter, and a is the
amplitude of the perturbation. Each disturbance is repre-
sented by a wave of the form in two-dimensional13,14 �2D�

�u��x,z,t�,v��x,z,t�,N��x,z,t�,p��x,z,t�,a�x,t��

= �û�z�, v̂�z�,N̂�z�, p̂�z�, â�eik�x−ct�. �14�

Here, all variables with hat �.̂� are the complex amplitudes, k
is the streamwise wavenumber, and c is the complex phase
velocity. Assuming small perturbations and inviscid
conditions,30 Eqs. �9� and �11� are linearized as follows

ik�U0 − c�û = − ikp̂/� + s�v̂ − û� + ikgâ , �15�

ik�U0 − c�v̂ = �û − v̂�/� + ikgâ . �16�

Here, s=N0 /� and �=m /. Note that s has units of fre-
quency and � is the particle response time with units of time.

In Eq. �17� below, p̂ is obtained by a function of û by
combining Eqs. �15� and �16� �Refs. 13�

�U0 − c�1 +
�s

1 + ik��U0 − c��û

= − p̂/� + 1 +
�s

1 + ik��U0 − c��gâ . �17�

Here, the velocity potential is defined as ��=U0+���,
where the perturbed velocity is ���=u�. Since �� can also
be represented by a disturbance of the form ���x , t�
= �̂�z�eik�x−ct�, the expression for p̂ is found as
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p̂ = �1 +
�s

1 + ik��U0 − c���gâ − ik�U0 − c��̂� . �18�

The boundary conditions are taken at the far field and species
interface. First, the velocity potentials in each species are
defined as

�� = ��2� z � a

�1� z 
 a ,
� �19�

Here, subscripts 1 and 2 correspond to the light and heavy
gases, respectively. At the far field, the disturbance is zero, so
that the following far field conditions are taken:

�2���� = 0,

�20�
�1��− �� = 0.

Since �� j�=0 �where the subscript j indicates the specie 1 or
2�, � j� is found as

�2� = �ekz,

�21�
�1� = �e−kz.

Two boundary conditions at the interface are enforced.14,30

First, the fluid motion at the interface is given as

�� j�

�z
=

�a

�t
+ Uj

�a

�x
. �22�

From Eqs. �20�–�22�, � and � are found

� = i�U2 − c�a ,

�23�
� = − i�U1 − c�a .

Also, the pressure at the species interface is continuous �i.e.,
p1̂�a�= p2̂�a��

p̂ = �11 +
�1s1

1 + ik�1�U1 − c���gâ − ik�U1 − c��1
̂�

= �21 +
�2s2

1 + ik�2�U2 − c���gâ − ik�U2 − c��2
̂� . �24�

Combining Eqs. �23� and �24�, and approximate �̂ on the
interface by first order �i.e. eka�1.0; e−ka�1.0�

�11 +
�1s1

1 + ik�1�U1 − c���g − k�U1 − c�2�

= �21 +
�2s2

1 + ik�2�U2 − c���g + k�U2 − c�2� �25�

which is a general expression for instability applicable for
KHI, RTI, and RMI. Note that Eq. �25� becomes the same
expression derived by Michael14 if �1=�2 and g=0. Since
flow in RTI and RMI is initially at rest, U1=U2=0 is appli-
cable in Eq. �25�, and the following equation is obtained for
a two-phase RTI or RMI:

�11 +
f1

1 − ik�1c
��g − kc2� = �21 +

f2

1 − ik�2c
��g + kc2� ,

�26�

where f1 and f2 are, respectively, the mass loading in light
and heavy gases given by f j =mN0 /� j =� jsj. Since the ana-
lytical expression presented in Eq. �26� is difficult to solve,
the small k�c limit ��k�c��1.0� is assumed to simplify
Eq. �26� to

�1�1 + f1��g − kc2� = �2�1 + f2��g + kc2� . �27�

It might be possible to obtain the solution of Eq. �26� for
intermediate and large �k�c� by numerical analysis. However,
this study only focuses on small �k�c� limit since the assump-
tion that the mean velocity of the particles is equal to the
mean velocity of fluid in Eq. �13� implies that the Stokes
number is small, and therefore �k�c��1.0. A more general
formulation will be necessary to develop analytical expres-
sions valid also for intermediate and large �k�c�, and will be
revisited in the future.

Then, the wave speed is obtained as

c2 =
g

k

�1�1 + f1� − �2�1 + f2�
�1�1 + f1� + �2�1 + f2�

= −
g

k
Am, �28�

where the multiphase Atwood number Am is defined as

Am =
�2�1 + f2� − �1�1 + f1�
�2�1 + f2� + �1�1 + f1�

. �29�

Note that the real part of c is found to be zero from Eq. �28�,
as also seen in the RTI analysis.30 Equation �29� implies that
Atwood number can also be controlled by the particles. Even
negative Atwood number that causes inversion of the
perturbation31 is possible if the number density of particle
cloud in fluid 1 is large. However, this is not the focus of this
paper and we will consider only positive Atwood numbers in
this investigation. Also, Am becomes identical to the Atwood
number used in the original model if there are no particles
�i.e. f1= f2=0�. The impulsive model1 assumes that the fluid
interface for RMI is accelerated impulsively as

� g�t�dt = �V . �30�

Here, the impulsive model assumes that the particles and the
local fluid obtain the same amount of the velocity change
�V. A useful parameter to verify this assumption is the
Stokes number St which is the ratio of the particle response
time and the flow time.32 Here, the flow time scale of RMI is
chosen based on the initial growth rate, and St is defined as

St =
�

�RMI
. �31�

The time scale for RMI is defined as �RMI=a0 /v, where a0 is
the initial amplitude of the perturbation and v is the initial
RMI growth rate. When St�1.0, the particles can catch up
with the local velocity very quickly and so that the assump-
tion of the impulsive model is valid, whereas particles do not
respond while the RMI is evolving if St�1.0.32 The accel-
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eration of the interface motion can be described by the fol-
lowing differential equation:1

d2a�t�
dt2 = − a�t�k2c2. �32�

If the small k�c assumption is invoked, c2 in Eq. �32� can be
substituted by Eq. �28� resulting in

d2a�t�
dt2 = a�t�g�t�kAm. �33�

Applying the impulsive model and integrating in time, the
following linear growth model for multiphase RMI is ob-
tained:

�da�t�
dt

�
t=0

= − ikca0 = v0,m, �34�

a�t� = v0,mt + a0, �35�

where v0,m=a0kAm�V is the multiphase Richtmyer velocity.
Note that if there are no particles �f1= f2=0�, this formula-
tion reduces to the original Richtmyer’s model �Eq. �8��. The
wave speed c is obtained as c=−v0,m / �ika0�, so that small
k�c limit can be described as

TABLE I. Parameters for the first study and the growth rate obtained from the numerical simulation and theoretical models. Here, Stokes number St is
computed based on the numerically obtained initial growth rate, v0,num. Thus, St1=v0,num�1 /a0.

rp

�	m� f1 f2

�1

�s�
�2

�s� �V v0,num A v0
v0,num

v0
Am v0,m

v0,num

v0,m
St1

No particle 0.0 0.0 68.5 10.46 0.71 12.15 0.86

Case 0.5-1 0.5 0.88 0.17 2.09�10−6 2.79�10−6 65 8.00 0.71 11.53 0.69 0.57 9.24 0.87 4.19�10−2

Case 0.5-2 0.5 1.75 0.34 2.09�10−6 2.79�10−6 62 6.28 0.71 10.99 0.57 0.48 7.44 0.84 3.29�10−2

Case 0.5-3 0.5 4.34 0.84 2.09�10−6 2.79�10−6 55 3.53 0.71 9.21 0.38 0.34 4.40 0.80 1.97�10−2

Case 0.5-4 0.5 8.69 1.71 2.09�10−6 2.79�10−6 47 1.88 0.71 7.36 0.26 0.25 2.58 0.73 1.13�10−2

Case 1.0-1 1.0 0.70 0.14 8.37�10−6 1.11�10−5 66 8.82 0.70 11.66 0.76 0.59 9.72 0.91 0.18

Case 1.0-2 1.0 1.41 0.27 8.37�10−6 1.11�10−5 63 7.33 0.71 11.17 0.66 0.51 8.05 0.91 0.15

Case 1.0-3 1.0 3.53 0.68 8.37�10−6 1.11�10−5 57 4.27 0.71 10.16 0.42 0.37 5.33 0.80 8.95�10−2

Case 1.0-4 1.0 6.95 1.38 8.37�10−6 1.11�10−5 51 2.31 0.71 8.87 0.26 0.28 3.44 0.67 4.96�10−2

Case 2.0-1 2.0 0.61 0.11 3.35�10−5 4.47�10−5 66 8.90 0.70 12.13 0.73 0.60 10.3 0.86 0.72

Case 2.0-2 2.0 1.21 0.22 3.35�10−5 4.47�10−5 64 7.48 0.71 12.77 0.59 0.52 9.47 0.79 0.56

Case 2.0-3 2.0 2.94 0.54 3.35�10−5 4.47�10−5 59 4.51 0.71 12.08 0.37 0.39 6.69 0.67 0.33

Case 2.0-4 2.0 5.65 1.08 3.35�10−5 4.47�10−5 53 2.38 0.71 10.65 0.22 0.30 4.47 0.53 0.18

Case 4.0-1 4.0 0.52 0.09 1.34�10−4 1.79�10−4 67 9.45 0.70 11.83 0.80 0.61 10.25 0.92 3.17

Case 4.0-2 4.0 1.04 0.18 1.34�10−4 1.79�10−4 65 8.42 0.70 11.48 0.73 0.54 8.77 0.96 2.82

Case 4.0-3 4.0 2.51 0.45 1.34�10−4 1.79�10−4 61 5.60 0.70 10.77 0.52 0.41 6.22 0.90 1.88

Case 4.0-4 4.0 4.57 0.91 1.34�10−4 1.79�10−4 55 3.68 0.70 9.71 0.38 0.32 4.47 0.82 1.23

Case 8.0-1 8.0 0.22 0.07 5.36�10−4 7.16�10−4 67 9.94 0.70 11.83 0.84 0.67 11.22 0.89 13.3

Case 8.0-2 8.0 0.44 0.14 5.36�10−4 7.16�10−4 66 9.31 0.70 11.65 0.80 0.64 10.58 0.88 12.4

Case 8.0-3 8.0 1.13 0.34 5.36�10−4 7.16�10−4 62 7.96 0.70 10.97 0.73 0.57 8.85 0.90 10.6

Case 8.0-4 8.0 2.27 0.69 5.36�10−4 7.16�10−4 57 6.46 0.70 10.07 0.64 0.49 7.09 0.91 8.66

Case 16.0-1 16.0 1.99 0.50 2.14�10−3 2.86�10−3 60 8.65 0.70 10.53 0.82 0.48 7.17 1.21 46.3

Case 16.0-2 16.0 4.04 1.01 2.14�10−3 2.86�10−3 54 7.11 0.70 9.44 0.75 0.38 5.17 1.38 38.1

Case 16.0-3 16.0 10.33 2.59 2.14�10−3 2.86�10−3 43 4.84 0.70 7.53 0.64 0.28 3.00 1.61 25.9

Case 16.0-4 16.0 20.90 4.88 2.14�10−3 2.86�10−3 34 2.77 0.69 5.86 0.47 0.18 1.53 1.80 14.8

Case 32.0-1 32.0 1.97 0.44 8.58�10−3 1.14�10−2 67 9.76 0.70 11.75 0.83 0.46 7.78 1.25 209

Case 32.0-2 32.0 4.01 0.90 8.58�10−3 1.14�10−2 65 8.95 0.70 11.39 0.79 0.36 5.86 1.53 191

Case 32.0-3 32.0 10.33 2.30 8.58�10−3 1.14�10−2 61 7.25 0.69 10.59 0.68 0.23 3.52 2.06 155

Case 32.0-4 32.0 21.41 4.84 8.58�10−3 1.14�10−2 54 5.51 0.69 9.27 0.59 0.16 2.18 2.52 118

Case 64.0-1 64.0 2.16 0.38 3.43�10−2 4.58�10−2 67 10.27 0.70 11.81 0.87 0.43 7.18 1.43 881

Case 64.0-2 64.0 4.31 0.76 3.43�10−2 4.58�10−2 65 9.98 0.70 11.42 0.87 0.30 4.97 2.01 856

Case 64.0-3 64.0 10.97 1.97 3.43�10−2 4.58�10−2 58 9.01 0.70 10.14 0.89 0.16 2.34 3.86 773

Case 64.0-4 64.0 22.32 4.07 3.43�10−2 4.58�10−2 56 7.90 0.69 9.74 0.81 0.09 1.24 6.39 677

FIG. 1. Initial configuration of RMI in a perturbed species interface sur-
rounded by a cloud of solid particles. The grey region denotes the region
filled with the gas-particle mixture.
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− ik�c =
�

a0/v0,m
=

�

�RMI
= St . �36�

Thus, the model indicates that the initial multiphase RMI
growth can be described by only two extra parameters for
multiphase flow: f and St, i.e., particle loading and how soon
the particles can respond to the flow.

In summary, the two-phase RMI growth model asymp-
totes to the classical RMI model in the absence of particles.
In the presence of particles, to obtain a modified growth
model, following assumptions are necessary:

�1� Volume fraction of particles is small, so collision effects
are neglected �dusty gas formulation�;

�2� The particle shape is spherical and Red is small; thus the
drag law is approximated simply by Stokes’ law;

�3� St�1.0 to apply the impulsive model and to simplify
Eq. �26�.

IV. RESULTS

We first discuss the case with a shock driven RMI on an
air/SF6 interface surrounded by particles, followed by studies
of a shock interaction with a perturbed cloud of solid par-
ticles. Since the growth model and the numerical scheme
treat the particle phase differently, the numerical setup is
chosen to satisfy the assumptions of the dusty gas formula-
tion to enable direct comparisons. Thus, dilute monodis-
persed particle distribution is used in the present study. For
simplicity, we limit ourselves to 2D study here. Full three-
dimensional studies will be reported later, but the overall
conditions of this study are expected to hold.

A. Air/SF6 interface surrounded by particles

Here, the 2D single-mode air/SF6 RMI surrounded by a
large number of particles is analyzed. The domain configu-
ration used in the current study is shown in Fig. 1; the
streamwise length is Lx=16 cm, and the transverse length is
Ly =1 cm. The shock, the dusty gas front, and the perturbed
species interface are located at 13, 9, and 8 cm, respectively,
from the end wall. The incident Mach number is 1.2, and SF6

and air characterize the initial species interface with a 2D
single-mode perturbation as3

a�y� = a0 sin
2�

�
y� �37�

with a0=0.5 mm and � is equal to the transverse length of
the domain. Spherical particles with a density of 780 kg /m3

are uniformly distributed along computational cells in the
grey region shown in Fig. 1. The amplitude of the perturba-
tion is measured as the half length of the isocontour of the
mass fraction at the species interface.33

Parametric studies of RMI particle interactions with dif-
ferent values of f1, f2, �1, and �2 are analyzed by changing
the particle sizes and number density. Eight different particle
sizes corresponding to four different mass loadings are simu-
lated. The parameters of different cases, the predictions by
the original RMI growth model, the multiphase RMI growth
model, and the numerical predictions are in Table I. Note that

� is computed from the properties after the incident shock
passes the interface, and f is computed by also considering
the compression of number density of particles due to the
incident shock.

The effects of grid resolution and parcel distribution are
presented in Fig. 2. The amplitudes without particles are nu-
merically obtained using two different grid sizes �1024�64
and 2048�128�. For the curve titled “grid” in Fig. 2, there is
a slight difference �less than 0.5%� in the amplitude even
before the shock hits the perturbation since the number of
grid cells to resolve the initial perturbation shape is different
for different grid sizes, thereby causing some numerical dif-
fusion. However, these discrepancies are minimal; overall, it
is shown that the growth obtained by the coarser grid stays
within about 2% in the linear regime �Fig. 2�b�� and has a
maximum of 4% at late times. Since we are only interested
in the earlier linear regime in this investigation, the 1024
�64 grid is used for the remainder of this study. Also, the
number of parcels required per cell �and the number of par-
ticles per parcel to be assigned� has been investigated. For
example, two distributions of parcels with the condition of
case 0.5-1 are compared, and this represents the baseline
case. In one case, 64 parcels in the y-direction are distributed
evenly in the x-direction; therefore, one parcel is allocated
per cell. The other case uses 128 parcels in the y-direction,
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FIG. 2. Comparison of the effect of the assigned number of parcels on the
amplitude growth. Here, “64 grid” and “128 grid” correspond to the grid
size in the y-direction. The legend “64 parcel” indicates the case with 64
parcels initialized in the y-direction �i.e., initially one parcel per cell�, and
“128 parcel” uses 128 parcels in the y-direction, with the distance between
parcels being half of the 64 parcel case �i.e., 128 corresponds to four parcels
per cell initially.�
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with equal interparticle spacing maintained also in the
x-direction; this case corresponds to four parcels initially al-
located per cell. As evident in Fig. 2�b�, both these cases
show nearly identical growth rates with an error of only 1%,
thereby exemplifying that 64 parcels suffice in the
y-direction for the chosen dimensions. Thus, for the rest of
this study, we initialize 64 parcels in the y-direction, and use
the same inter-particle spacing also in the x-direction.

The flow visualizations of different sizes of particles
around RMI interfaces are presented in Fig. 3, with case
0.5-1 in the first row, case 4.0-1 in the second row, and case
64.0-1 in the third row. All the three cases show very differ-
ent particle distributions at later times, and can be character-
ized by Stokes number. In general, past studies have shown
that particles cluster at regions with low vorticity34,35 if St
�1.0. On the other hand, if St is very large, particles do not
easily respond to the fluid motion, whereas small St results in
particles following the fluid motion very closely; hence, pref-
erential concentration of particles does not occur in either of
these cases.32 Case 4.0-1 shows that the particles avoid the
hydrodynamic roll-ups, and particle clustering is seen in the
spikes since the Stokes number for this case is the order of
1.0 �St�3.0�. However, the case 0.5-1 shows that the par-
ticles distribute even within the roll-ups, since Stokes num-
ber is very low �St�0.04� and the particles inevitably follow
the flow. On the other hand, case 64.0-1 shows that the par-
ticles barely disperse since the Stokes number is very large
�St�880�. These observations are similar to the findings of

Ling et al.,32 who investigated particle cloud interaction with
temporal mixing layers.

In Table I, both single-phase and multiphase RMI
growth models are compared with the numerical predictions.
The growth rate without particles �denoted as “no particle”�
obtained from the numerical simulation, v0,num is slightly
smaller than the classical Richtmyer velocity v0 �v0,num /v0

=0.86� due to the Richtmyer’s model overpredicting the
growth rate, as also reported by Latini et al.6 The numerical
prediction of case 0.5-X �where X denotes 1, 2, 3, and 4�
shows good agreement with the multiphase Richtmyer veloc-
ity �Eq. �35�� since the particle response time is very small
and the model assumptions are valid �e.g. St�1.0�.

The growth rate of the series of case 0.5-X and the no
particle cases are examined in Fig. 4. As the particle loading
increases, the initial growth rate decreases since both Am and
�V decrease as the mass loading increases. In Fig. 5, the
same amplitude is normalized and presented �note that the
multiphase Richtmyer velocity is used�. The normalized
growth rate shows good agreement in the early stage; for
example, case 0.5-1 follows nearly exactly up to kv0,mt
1,
but starts to depart from the no particle case eventually �Fig.
5�. The reason for the different late-time growth may be the
nonuniform distributions of particles, which occur when the
perturbations grow larger at late times. Due to the nonuni-
form distribution of particles around the hydrodynamic struc-
tures as shown in Fig. 3, the late-time growth rate of the
perturbation will be different from the no particle case. It

t = 0.1875 ms t = 0.4875 ms t = 0.7875 ms
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FIG. 3. Contour of mass fraction of SF6 with particle distribution �black dots�. The first row corresponds to St�1.0 �case 0.5-1�, the second row to
St�1.0 �case 4.0-1�, and the third row to St�1.0 �case 64.0-1�.
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might be interesting to extend the definition of Am to nonlin-
ear growth models that have been developed in the past36,37

for the single-phase RMI to predict the growth rates for mul-
tiphase flow fields as well. The comparisons have not been
made since the normalized initial amplitude growth rates
� v0,num

v0,m
� in each case 0.5-X is different as shown in Fig. 5,

whereas the normalized initial amplitude growth rates should
not be a function of Atwood number in a single-phase RMI.
We believe that the simple extension of A to Am would not
work since these models are established upon the assumption
of incompressibility, but as seen in Fig. 3, lateral particle
dispersion and clustering are observed for case 0.5-X even
when the Stokes number is very small. Therefore, more com-
prehensive models that can also account for particle disper-
sions and response times would be necessary to model non-
linear regimes. Further investigation along these lines is
necessary to investigate RMIs in gas-particle mixtures.

The multiphase RMI model also shows a better predic-
tion than the original Richtmyer model up to case 8.0-X
�rp�8.0 	m�. It is unexpected to see that case 4.0-X and
case 8.0-X follow the multiphase RMI model well since St
�1.0 for these cases and the assumptions of the multiphase
RMI are not valid. However, numerical predictions show
very good agreement with the multiphase RMI model. It
could presumably be due to nonlinear fluid-particle interac-

tions, but more general theoretical models could be devel-
oped in the future to explain the phenomena more precisely.
However, for much larger particles �rp�16.0 	m, St�1.0�
the two-phase model is inapplicable, and the original Richt-
myer velocity shows better predictions. This makes sense
since the original RMI is for single-phase flow. In fact, case
64.0-X follows the original Richtmyer velocity very closely
since the particles are not significantly influenced during the
RMI growth process. Owing to their higher inertia, these
particles have St�800. Furthermore, changing the mass
loading does not influence the growth rate as much as the
small particle cases shown in Fig. 6, since interphase mo-
mentum exchange is not very significant. The growth profiles
normalized by the original Richtmyer velocity are nearly
identical up to kv0t=2.0 including the no particle case as
shown in Fig. 7, indicating that the presence of particles does
not influence the perturbation growth when St�1.0.

In summary, results for a RMI surrounded by a uniform
distribution of particles suggest that when the particle re-
sponse time is relatively small �St�1.0�, the growth rates
agree very well with the multiphase Richtmyer velocity.
However, when the particle response time is very large �St
�1.0�, the particles are not influenced by the fluid, and the
amplitude growth follows the original Richtmyer velocity.
Thus, the particle response time is a very important factor to
control the applicability of both the current multiphase
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FIG. 4. Amplitude growth for small particles with different loading �case
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growth model as well as the original Richtmyer’s growth
model. In the next section, the second RMI problem involv-
ing the perturbed shape particle cloud in air is analyzed.

B. Perturbed shape particle cloud

In this section, the RMI is investigated for a shock wave
interaction with a cloud of solid particles with a perturbed
shape in air instead of a heavy gas �such as SF6�. A sche-
matic of the setup is presented in Fig. 8. The dusty gas front
and the shock front are placed 8 and 9 cm from the end wall,
respectively, and the initial amplitude of the perturbation of
the dusty gas is 0.5 mm. The same domain size �16
�1 cm� and grid resolution �1024�64� of the first study are
used here. The incident Mach number is 1.2 as well, and the
domain is filled with air only. The amplitude of the perturbed
particle cloud is defined as half of the length of the disper-
sion in the x-direction of the particles that are initially placed
in the front row. Five different particle sizes with four differ-
ent mass loadings are studied, and Table II summarizes the
parameters and the results of each case. Here, the multiphase
RMI growth model and numerical predictions are compared.

In order to ascertain the choice of the number of parcels
to represent the particle cloud for the simulations, three dif-
ferent parcel distributions are simulated for case P0.5-1 and
presented in Fig. 9. The case with 64 parcels slightly over-
predicts the growth at late times by about 4% whereas 128
and 256 parcel cases show very good agreement with only
about 1% error. Thus, 128 parcels in the y-directions are used
for the rest of this section.

Figure 10 compares the evolution of the perturbation of
a particle cloud for different Stokes numbers, for the cases
P0.5-4 and P2.0-4. For case P0.5-4, narrow spikes are ob-
served and the particles undergo less transverse dispersion
vis-à-vis the P2.0-4 case; due to this, the particle cloud inter-
faces are sharper for P0.5-4. However, case P2.0-4 shows
wider spikes that result in the dispersion of particles around
the spike at late times, clearly demonstrating that different
particle dispersion is due to differences in the Stokes number.
As Uchiyama and Yagami38 pointed out, when a vortex ring
interacts with a particle cloud, it can cause particles to move
outside the vortex ring due to a centrifugal force. As a result,
the particles are distributed over a wider region around the
vortex ring. However, the Stokes number for the particles in
case P0.5-4 is very small, St�0.04, due to which the par-
ticles follow the fluid motion rather than being dispersed by
the vortex rings.

The numerical prediction of the growth rate of small
particles cases �case P0.5-X and case P1.0-X� are close to the
multiphase RMI model �v0,num /v0,m�0.8� as seen in the pre-
vious section �Table I�. The growth of the dusty gas pertur-
bation is shown in Fig. 11; unlike the earlier result, the cases
corresponding to a higher mass loading tend to have higher

FIG. 8. Initial configuration of RMI of the perturbed shape particle clouds.
The grey region denotes the region filled with the gas-particle mixture.

TABLE II. Parameters and results for the second kind of multiphase RMI. The results of cases P4.0-X and P8.0-X are not listed because the acceleration of
the particles for these cases is not impulsive due to the high inertia of the particles, and �V could not be determined for the same reason.

rp

�	m� f2

�2

�s� �V v0,num Am v0,m
v0,num

v0,m
St2

Case P0.5-1 0.5 0.86 2.05�10−6 88 5.81 0.30 6.71 0.84 2.90�10−2

Case P0.5-2 0.5 1.77 2.05�10−6 78 8.13 0.46 9.21 0.80 3.78�10−2

Case P0.5-3 0.5 4.37 2.05�10−6 62 9.44 0.68 10.84 0.75 4.13�10−2

Case P0.5-4 0.5 8.73 2.05�10−6 50 9.85 0.81 10.41 0.79 4.18�10−2

Case P1.0-1 1.0 0.69 8.22�10−6 90 4.77 0.25 5.82 0.80 9.52�10−2

Case P1.0-2 1.0 1.41 8.22�10−6 81 6.98 0.40 8.36 0.79 0.134

Case P1.0-3 1.0 3.47 8.22�10−6 66 9.44 0.63 10.65 0.79 0.172

Case P1.0-4 1.0 6.94 8.22�10−6 53.5 10.02 0.77 10.61 0.81 0.175

Case P2.0-1 2.0 0.56 3.28�10−5 92 3.1 0.21 5.03 0.62 0.253

Case P2.0-2 2.0 1.12 3.28�10−5 84 4.75 0.35 7.52 0.63 0.388

Case P2.0-3 2.0 2.78 3.28�10−5 70 7.59 0.57 10.32 0.74 0.621

Case P2.0-4 2.0 5.55 3.28�10−5 57.5 9.08 0.73 10.78 0.84 0.743

Case P4.0-1 4.0 0.35 1.31�10−4

Case P4.0-2 4.0 0.89 1.31�10−4

Case P4.0-3 4.0 2.31 1.31�10−4

Case P4.0-4 4.0 4.47 1.31�10−4

Case P8.0-1 8.0 1.03 5.26�10−4

Case P8.0-2 8.0 2.04 5.26�10−4

Case P8.0-3 8.0 2.94 5.26�10−4

Case P8.0-4 8.0 3.82 5.26�10−4
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growth rates since it generates a higher Am. However, a
higher mass loading leads to slower �V, and therefore results
in smaller v0,m. In fact, from Table II, the model prediction of
v0,m in case P0.5-3 is larger than case P0.5-4 even though the
numerical results are opposite. The normalized growth rates
indicate that the growth of the dusty gas perturbation is even
comparable to the single-phase RMI, especially up to kv0t


2.0, as presented in Fig. 12. Thus, the results indicate that
the dispersion of perturbed shape particle clouds can be ex-
plained by multiphase RMI growth models, even though it is
hitherto not treated as a RMI problem in literature.

However, the growth of the perturbation follows RMI
only for small St. If larger particles are used, they rather
experience continuous acceleration until the particles and the
gas attain equilibrium �in terms of velocity�. Therefore, the
amplitude growth rate of the heavier particle accelerates in
the initial stage as presented in Fig. 13, and shows exponen-
tial growth instead of linear growth as seen in the RTI at
early times.36

In summary, the amplitude growth of perturbed shape
particle cloud in air is investigated for a range of conditions
by using numerical simulations and compared with the de-
veloped multiphase RMI model. The results show that the
growth rates of the simulations are predicted well by the
multiphase RMI growth model, and the normalized ampli-
tude growth rates are in accordance with the gas phase RMI.
Therefore, this study suggests that dilute particle cloud dis-
persion by a shock wave can be treated as a RMI as long as
the particle response time is small. However, if the particle
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FIG. 9. Comparison of the effect of number of parcels to the amplitude
growth for the second kind of RMI under study for case P0.5-1. In the
legend, 64 parcel, 128 parcel, and 256 parcel denote the number of parcels
used in the y-direction, respectively, with the corresponding interparcel dis-
tance applied also in the x-direction.

t = 0.1875 ms t = 0.3875 ms t = 0.675 ms

C
a
se

P
0
.5
-4

(a) (b) (c)

C
a
se

P
2
.0
-4

(d) (e) (f)

FIG. 10. Particle distribution around the RMI structure at different times for the second kind of RMI.

0 0.0002 0.0004 0.0006 0.0008
Time (s)

0

0.001

0.002

0.003

0.004

0.005

0.006

A
m

p
li

tu
d
e

(m
)

Case P0.5-1
Case P0.5-2
Case P0.5-3
Case P0.5-4

FIG. 11. Amplitude growth of perturbed shape particle clouds with different
initial particle mass loadings for case P0.5-X �X=1, 2, 3, and 4�.

104103-10 Ukai, Balakrishnan, and Menon Phys. Fluids 22, 104103 �2010�



response time is large, the particles experience continuous
acceleration, and the growth of the interface shows exponen-
tial growth similar to RTI.

V. CONCLUSIONS

The present study derives the growth model of multi-
phase RMI by using dusty gas assumptions, and analyzes
two kinds of RMIs in gas-particle mixtures. For a RMI in-
volving an air/SF6 interface surrounded by a uniformly dis-
tributed particle cloud, it is found that the multiphase RMI
model predicts the numerical simulation growth rates better
than the original RMI model when the particle response
time, St
10.0. However, when the particle response time is
larger, the growth rates follow the original Richtmyer’s
model since the particles do not follow the fluid motion and
the RMI process is entirely based on the gas phase. When the
Stokes number is on the order of unity, preferential concen-
tration of particles is found. However, when the Stokes num-
ber is small �St�0.04�, relatively uniform particle distribu-
tion is observed in the high vorticity region. For large Stokes
number �St�880�, on the other hand, the particles are not
influenced by the fluid motion. The second type of multi-
phase RMI involves the multiphase growth of the perturbed
particle cloud by a shock wave. Here, too, the multiphase
RMI growth model shows good agreement with the numeri-

cal results, and the normalized growth rate of each case cor-
responds to the single-phase RMI even at late times. How-
ever, requirements on the particle response time is stricter,
and the impulsive acceleration is found only when St�1.0.
If the particles response time is large, particles experience
continuous acceleration after the shock, which results in a
RTI-like exponential growth rate at early times.
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